skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koester, Detlev"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT There is a wealth of evidence to suggest that planetary systems can survive beyond the main sequence. Most commonly, white dwarfs are found to be accreting material from tidally disrupted asteroids, whose bulk compositions are reflected by the metals polluting the stellar photospheres. While many examples are known, most lack the deep, high-resolution data required to detect multiple elements, and thus characterize the planetesimals that orbit them. Here, spectra of seven DZ white dwarfs observed with Keck High Resolution Echelle Spectrometer (HIRES) are analysed, where up to nine metals are measured per star. Their compositions are compared against those of Solar system objects, working in a Bayesian framework to infer or marginalize over the accretion history. All of the stars have been accreting primitive material, similar to chondrites, with hints of a Mercury-like composition at one star. The most polluted star is observed several Myr after its last major accretion episode, in which a Moon-sized object met its demise. 
    more » « less
  2. Abstract White dwarf (WD) stars evolve simply and predictably, making them reliable age indicators. However, self-consistent validation of the methods for determining WD total ages has yet to be widely performed. This work uses 1565 wide (>100 au) WD+WD binaries and 24 new triples containing at least two WDs to test the accuracy and validity of WD total age determinations. For these 1589 wide double WD binaries and triples, we derive the total age of each WD using photometric data from all-sky surveys, in conjunction with Gaia parallaxes and current hydrogen atmosphere WD models. Ignoring the initial-to-final mass relation and considering only WD cooling ages, we find that roughly 21%–36% of the more massive WDs in a system have a shorter cooling age. Since more massive WDs should be born as more massive main-sequence stars, we interpret this unphysical disagreement as evidence of prior mergers or the presence of an unresolved companion, suggesting that roughly 21%–36% of wide WD+WD binaries were once triples. Among the 423 wide WD+WD pairs that pass high-fidelity cuts, we find that 25% total age uncertainties are generally appropriate for WDs with masses >0.63Mand temperatures <12,000 K and provide suggested inflation factors for age uncertainties for higher-mass WDs. Overall, WDs return reliable stellar ages, but we detail cases where the total ages are least reliable, especially for WDs <0.63M
    more » « less
  3. ABSTRACT This work combines spectroscopic and photometric data of the polluted white dwarf WD 0141−675, which has a now retracted astrometric super-Jupiter candidate, and investigates the most promising ways to confirm Gaia astrometric planetary candidates and obtain follow-up data. Obtaining precise radial velocity measurements for white dwarfs is challenging due to their intrinsic faint magnitudes, lack of spectral absorption lines, and broad spectral features. However, dedicated radial velocity campaigns are capable of confirming close-in giant exoplanets (a few MJup) around polluted white dwarfs, where additional metal lines aid radial velocity measurements. Infrared emission from these giant exoplanets is shown to be detectable with JWST Mid-Infrared Instrument (MIRI) and will provide constraints on the formation of the planet. Using the initial Gaia astrometric solution for WD 0141−675 as a case study, if there were a planet with a 33.65 d period or less with a nearly edge-on orbit, (1) ground-based radial velocity monitoring limits the mass to <15.4 MJup, and (2) space-based infrared photometry shows a lack of infrared excess and in a cloud-free planetary cooling scenario, a substellar companion would have to be <16 MJup and be older than 3.7 Gyr. These results demonstrate how radial velocities and infrared photometry can probe the mass of the objects producing some of the astrometric signals, and rule out parts of the brown dwarf and planet mass parameter space. Therefore, combining astrometric data with spectroscopic and photometric data is crucial to both confirm and characterize astrometric planet candidates around white dwarfs. 
    more » « less
  4. ABSTRACT We report the discovery of 74 new pulsating DA white dwarf stars, or ZZ Cetis, from the data obtained by the Transiting Exoplanet Survey Satellite mission, from Sectors 1 to 39, corresponding to the first 3 cycles. This includes objects from the Southern hemisphere (Sectors 1–13 and 27–39) and the Northern hemisphere (Sectors 14–26), observed with 120 s- and 20 s-cadence. Our sample likely includes 13 low-mass and one extremely low-mass white dwarf candidate, considering the mass determinations from fitting Gaia magnitudes and parallax. In addition, we present follow-up time series photometry from ground-based telescopes for 11 objects, which allowed us to detect a larger number of periods. For each object, we analysed the period spectra and performed an asteroseismological analysis, and we estimate the structure parameters of the sample, i.e. stellar mass, effective temperature, and hydrogen envelope mass. We estimate a mean asteroseismological mass of 〈Msis〉 = 0.635 ± 0.015 M⊙, excluding the candidate low or extremely low-mass objects. This value is in agreement with the mean mass using estimates from Gaia data, which is 〈Mphot〉 = 0.631 ± 0.040 M⊙, and with the mean mass of previously known ZZ Cetis of 〈M*〉 = 0.644 ± 0.034 M⊙. Our sample of 74 new bright ZZ Cetis increases the number of known ZZ Cetis by ∼20 per cent. 
    more » « less